Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2037, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499536

RESUMO

Antimicrobial resistance (AMR) is a major public health threat, reducing treatment options for infected patients. AMR is promoted by a lack of access to rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify effective antibiotics for treatment in a timely and informed manner. We describe a rapid growth-independent phenotypic AST that uses a nanomotion technology platform to measure bacterial vibrations. Machine learning techniques are applied to analyze a large dataset encompassing 2762 individual nanomotion recordings from 1180 spiked positive blood culture samples covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to cephalosporins and fluoroquinolones. The training performances of the different classification models achieve between 90.5 and 100% accuracy. Independent testing of the AST on 223 strains, including in clinical setting, correctly predict susceptibility and resistance with accuracies between 89.5% and 98.9%. The study shows the potential of this nanomotion platform for future bacterial phenotype delineation.


Assuntos
Antibacterianos , Cefalosporinas , Humanos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Bactérias , Aprendizado de Máquina , Tecnologia
2.
J Med Chem ; 67(1): 81-109, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38157261

RESUMO

3,5-Dinitrobenzylsulfanyl tetrazoles and 1,3,4-oxadiazoles, previously identified as having high in vitro activities against both replicating and nonreplicating mycobacteria and favorable cytotoxicity and genotoxicity profiles were investigated. First we demonstrated that these compounds act in a deazaflavin-dependent nitroreduction pathway and thus require a nitro group for their activity. Second, we confirmed the necessity of both nitro groups for antimycobacterial activity through extensive structure-activity relationship studies using 32 structural types of analogues, each in a five-membered series. Only the analogues with shifted nitro groups, namely, 2,5-dinitrobenzylsulfanyl oxadiazoles and tetrazoles, maintained high antimycobacterial activity but in this case mainly as a result of DprE1 inhibition. However, these analogues also showed increased toxicity to the mammalian cell line. Thus, both nitro groups in 3,5-dinitrobenzylsulfanyl-containing antimycobacterial agents remain essential for their high efficacy, and further efforts should be directed at finding ways to address the possible toxicity and solubility issues, for example, by targeted delivery.


Assuntos
Mycobacterium tuberculosis , Animais , Oxidiazóis/farmacologia , Oxidiazóis/química , Tetrazóis/farmacologia , Tetrazóis/química , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Antituberculosos/química , Relação Estrutura-Atividade , Nitrorredutases , Mamíferos
3.
Microbes Infect ; 25(7): 105151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207717

RESUMO

Nanomotion technology is a growth-independent approach that can be used to detect and record the vibrations of bacteria attached to cantilevers. We have developed a nanomotion-based antibiotic susceptibility test (AST) protocol for Mycobacterium tuberculosis (MTB). The protocol was used to predict strain phenotype towards isoniazid (INH) and rifampicin (RIF) using a leave-one-out cross-validation (LOOCV) and machine learning techniques. This MTB-nanomotion protocol takes 21 h, including cell suspension preparation, optimized bacterial attachment to functionalized cantilever, and nanomotion recording before and after antibiotic exposure. We applied this protocol to MTB isolates (n = 40) and were able to discriminate between susceptible and resistant strains for INH and RIF with a maximum sensitivity of 97.4% and 100%, respectively, and a maximum specificity of 100% for both antibiotics when considering each nanomotion recording to be a distinct experiment. Grouping recordings as triplicates based on source isolate improved sensitivity and specificity to 100% for both antibiotics. Nanomotion technology can potentially reduce time-to-result significantly compared to the days and weeks currently needed for current phenotypic ASTs for MTB. It can further be extended to other anti-TB drugs to help guide more effective TB treatment.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Rifampina/farmacologia
4.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36976648

RESUMO

Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.


Assuntos
Ceramidas , Esfingolipídeos , Humanos , Ceramidas/metabolismo , Homeostase , Mutação , Esfingolipídeos/genética , Esfingolipídeos/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-36563654

RESUMO

Tuberculosis, and especially multidrug-resistant tuberculosis (MDR-TB), is a major global health threat which emphasizes the need to develop new agents to improve and shorten treatment of this difficult-to-manage infectious disease. Among the new agents, macozinone (PBTZ169) is one of the most promising candidates, showing extraordinary potency in vitro and in murine models against drug-susceptible and drug-resistant Mycobacterium tuberculosis. A previous analytical method using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed by our group to support phase I clinical trials of PBTZ169. These plasma sample analyses revealed the presence of several additional metabolites among which the most prominent was H2PBTZ, a reduced species obtained by dearomatization of macozinone, one of the first examples of Meisenheimer Complex (MC) metabolites identified in mammals. Identification of these new metabolites required the optimization of our original method for enhancing the selectivity between isobaric metabolites as well as for ensuring optimal stability for H2PBTZ analyses. Sample preparation methods were also developed for plasma and urine, followed by extensive quantitative validation in accordance with international bioanalytical method recommendations, which include selectivity, linearity, qualitative and quantitative matrix effect, trueness, precision and the establishment of accuracy profiles using ß-expectation tolerance intervals for known and newer analytes. The newly optimized methods have been applied in a subsequent Phase Ib clinical trial conducted in our University Hospital with healthy subjects. H2PBTZ was found to be the most abundant species circulating in plasma, underscoring the importance of measuring accurately and precisely this unprecedented metabolite. Low concentrations were found in urine for all monitored analytes, suggesting extensive metabolism before renal excretion.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Humanos , Camundongos , Cromatografia Líquida/métodos , Mamíferos , Piperazinas , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto
6.
BMJ Open ; 12(11): e064016, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36410804

RESUMO

INTRODUCTION: Effective treatment of bloodstream infections (BSIs) is relying on rapid identification of the causing pathogen and its antibiotic susceptibility. Still, most commercially available antibiotic susceptibility testing (AST) methods are based on monitoring bacterial growth, thus impacting the time to results. The Resistell AST is based on a new technology measuring the nanomotion caused by physiologically active bacterial cells and detecting the changes in nanomotion caused by the exposure to a drug. METHODS AND ANALYSIS: This is a single-centre, prospective, cross-sectional, single-arm diagnostic accuracy study to determine the agreement of the Resistell AST on Gram-negative bacteria isolated from blood cultures among patients admitted to a tertiary-care hospital with the reference method. Up to 300 patients will be recruited. Starting with a pilot phase, enrolling 10%-20% of the subjects and limited to Escherichia coli BSI tested for ceftriaxone susceptibility, the main phase will follow, extending the study to Klebsiella pneumoniae and ciprofloxacin. ETHICS AND DISSEMINATION: This study has received ethical approval from the Swiss Ethics Committees (swissethics, project 2020-01622). All the case report forms and clinical samples will be assigned a study code by the local investigators and stored anonymously at the reference centre (Lausanne University Hospital). The results will be broadly distributed through conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT05002413).


Assuntos
Bacteriemia , Adulto , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Estudos Transversais , Escherichia coli , Testes de Sensibilidade Microbiana , Estudos Observacionais como Assunto , Estudos Prospectivos , Tecnologia , Centros de Atenção Terciária
7.
ACS Infect Dis ; 8(3): 482-498, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35184552

RESUMO

Type II NADH dehydrogenase (NDH-2) is an essential component of electron transfer in many microbial pathogens but has remained largely unexplored as a potential drug target. Previously, quinolinyl pyrimidines were shown to inhibit Mycobacterium tuberculosis NDH-2, as well as the growth of the bacteria [Shirude, P. S.; ACS Med. Chem. Lett. 2012, 3, 736-740]. Here, we synthesized a number of novel quinolinyl pyrimidines and investigated their properties. In terms of inhibition of the NDH-2 enzymes from M. tuberculosis and Mycobacterium smegmatis, the best compounds were of similar potency to previously reported inhibitors of the same class (half-maximal inhibitory concentration (IC50) values in the low-µM range). However, a number of the compounds had much better activity against Gram-negative pathogens, with minimum inhibitory concentrations (MICs) as low as 2 µg/mL. Multivariate analyses (partial least-squares (PLS) and principle component analysis (PCA)) showed that overall ligand charge was one of the most important factors in determining antibacterial activity, with patterns that varied depending on the particular bacterial species. In some cases (e.g., mycobacteria), there was a clear correlation between the IC50 values and the observed MICs, while in other instances, no such correlation was evident. When tested against a panel of protozoan parasites, the compounds failed to show activity that was not linked to cytotoxicity. Further, a strong correlation between hydrophobicity (estimated as clog P) and cytotoxicity was revealed; more hydrophobic analogues were more cytotoxic. By contrast, antibacterial MIC values and cytotoxicity were not well correlated, suggesting that the quinolinyl pyrimidines can be optimized further as antimicrobial agents.


Assuntos
Mycobacterium tuberculosis , NADH Desidrogenase , Testes de Sensibilidade Microbiana , NAD , Pirimidinas/farmacologia
8.
Mol Pharm ; 19(2): 674-689, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34964633

RESUMO

Tuberculosis (TB) is a major global health challenge, with approximately 1.4 million deaths per year. There is still a need to develop novel treatments for patients infected with Mycobacterium tuberculosis (Mtb). There have been many large-scale phenotypic screens that have led to the identification of thousands of new compounds. Yet, there is very limited investment in TB drug discovery which points to the need for new methods to increase the efficiency of drug discovery against Mtb. We have used machine learning approaches to learn from the public Mtb data, resulting in many data sets and models with robust enrichment and hit rates leading to the discovery of new active compounds. Recently, we have curated predominantly small-molecule Mtb data and developed new machine learning classification models with 18 886 molecules at different activity cutoffs. We now describe the further validation of these Bayesian models using a library of over 1000 molecules synthesized as part of EU-funded New Medicines for TB and More Medicines for TB programs. We highlight molecular features which are enriched in these active compounds. In addition, we provide new regression and classification models that can be used for scoring compound libraries or used to design new molecules. We have also visualized these molecules in the context of known molecular targets and identified clusters in chemical property space, which may aid in future target identification efforts. Finally, we are also making these data sets publicly available, representing a significant increase to the available Mtb inhibition data in the public domain.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Teorema de Bayes , Humanos , Aprendizado de Máquina , Tuberculose/tratamento farmacológico
9.
EMBO J ; 40(8): e107238, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33749896

RESUMO

Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.


Assuntos
Proliferação de Células , Glicoesfingolipídeos/biossíntese , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Células Cultivadas , Células HeLa , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Transdução de Sinais
10.
ACS Infect Dis ; 7(1): 88-100, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33352041

RESUMO

Latent Mycobacterium tuberculosis infection presents one of the largest challenges for tuberculosis control and novel antimycobacterial drug development. A series of pyrano[3,2-b]indolone-based compounds was designed and synthesized via an original eight-step scheme. The synthesized compounds were evaluated for their in vitro activity against M. tuberculosis strains H37Rv and streptomycin-starved 18b (SS18b), representing models for replicating and nonreplicating mycobacteria, respectively. Compound 10a exhibited good activity with MIC99 values of 0.3 and 0.4 µg/mL against H37Rv and SS18b, respectively, as well as low toxicity, acceptable intracellular activity, and satisfactory metabolic stability and was selected as the lead compound for further studies. An analysis of 10a-resistant M. bovis mutants disclosed a cross-resistance with pretomanid and altered relative amounts of different forms of cofactor F420 in these strains. Complementation experiments showed that F420-dependent glucose-6-phosphate dehydrogenase and the synthesis of mature F420 were important for 10a activity. Overall these studies revealed 10a to be a prodrug that is activated by an unknown F420-dependent enzyme in mycobacteria.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Humanos , Mycobacterium tuberculosis/genética
11.
PLoS Pathog ; 16(1): e1008270, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971990

RESUMO

The emergence of multi-drug (MDR-TB) and extensively-drug resistant tuberculosis (XDR-TB) is a major threat to the global management of tuberculosis (TB) worldwide. New chemical entities are of need to treat drug-resistant TB. In this study, the mode of action of new, potent quinazoline derivatives was investigated against Mycobacterium tuberculosis (M. tb). Four derivatives 11626141, 11626142, 11626252 and 11726148 showed good activity (MIC ranging from 0.02-0.09 µg/mL) and low toxicity (TD50 ≥ 5µg/mL) in vitro against M. tb strain H37Rv and HepG2 cells, respectively. 11626252 was the most selective compound from this series. Quinazoline derivatives were found to target cytochrome bc1 by whole-genome sequencing of mutants selected with 11626142. Two resistant mutants harboured the transversion T943G (Trp312Gly) and the transition G523A (Gly175Ser) in the cytochrome bc1 complex cytochrome b subunit (QcrB). Interestingly, a third mutant QuinR-M1 contained a mutation in the Rieske iron-sulphur protein (QcrA) leading to resistance to quinazoline and other QcrB inhibitors, the first report of cross-resistance involving QcrA. Modelling of both QcrA and QcrB revealed that all three resistance mutations are located in the stigmatellin pocket, as previously observed for other QcrB inhibitors such as Q203, AX-35, and lansoprazole sulfide (LPZs). Further analysis of the mode of action in vitro revealed that 11626252 exposure leads to ATP depletion, a decrease in the oxygen consumption rate and also overexpression of the cytochrome bd oxidase in M. tb. Our findings suggest that quinazoline-derived compounds are a new and attractive chemical entity for M. tb drug development targeting two separate subunits of the cytochrome bc1 complex.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Quinazolinas/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Quinazolinas/química , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
12.
J Med Chem ; 63(3): 1105-1131, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31904960

RESUMO

A series of derivatives of the antimycobacterial natural product pyridomycin have been prepared with the C2 side chain attached to the macrocyclic core structure by a C-C single bond, in place of the synthetically more demanding enol ester double bond found in the natural product. Hydrophobic C2 substituents of sufficient size generally provide for potent anti-Mtb activity of these dihydropyridomycins (minimum inhibitory concentration (MIC) values around 2.5 µM), with several analogs thus approaching the activity of natural pyridomycin. Surprisingly, some of these compounds, in contrast to pyridomycin, are insensitive to overexpression of InhA in Mycobacterium tuberculosis (Mtb). This indicates that their anti-Mtb activity does not critically depend on the inhibition of InhA and that their overall mode of action may differ from that of the original natural product lead.


Assuntos
Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Oligopeptídeos/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oxirredutases/antagonistas & inibidores , Relação Estrutura-Atividade
13.
PLoS One ; 14(5): e0217139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150423

RESUMO

The emergence of Mycobacterium tuberculosis strains resistant to current first-line antibiotic regimens constitutes a major global health threat. New treatments against multidrug-resistant tuberculosis (MDR-TB) are thus eagerly needed in particular in countries with a high MDR-TB prevalence. In this context, macozinone (PBTZ169), a promising drug candidate with an unique mode of action and highly potent in vitro tuberculocidal properties against MDR Mycobacterium strains, has now reached the clinical phase and has been notably tested in healthy male volunteers in Switzerland. To that endeavor, a multiplex UHPLC-MS/MS method has been developed for the sensitive and accurate human plasma levels determination of PBTZ169 along with five metabolites retaining in vitro anti-TB activity. Plasma protein precipitation with methanol was carried out as a simplified sample clean-up procedure followed by direct injection of the undiluted supernatant for the bioanalysis of the six analytes within 5 min, using 1.8 µm reversed-phase chromatography coupled to triple quadrupole mass spectrometry employing electrospray ionization in the positive mode. Stable isotopically-labelled PBTZ169 was used as internal standard (ISTD), while metabolites could be reliably quantified using two unlabeled chemical analogues selected as ISTD from a large in-house analogous compounds library. The overall methodology was fully validated according to current recommendations (FDA, EMEA) for bioanalytical methods, which include selectivity, carryover, qualitative and quantitative matrix effect, extraction recovery, process efficiency, trueness, precision, accuracy profiles, method and instrument detection limits, integrity to dilution, anticoagulant comparison and short- and long-term stabilities. Stability studies on the reduced metabolite H2-PBTZ169 have shown no significant impact on the actual PBTZ169 concentrations determined with the proposed assay. This simplified, rapid, sensitive and robust methodology has been applied to the bioanalysis of human plasma samples collected within the frame of a phase I clinical study in healthy volunteers receiving PBTZ169.


Assuntos
Antibacterianos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Drogas em Investigação/análise , Metaboloma , Piperazinas/sangue , Espectrometria de Massas em Tandem/métodos , Tiazinas/sangue , Tuberculose Resistente a Múltiplos Medicamentos/sangue , Antituberculosos/sangue , Humanos , Masculino , Mycobacterium tuberculosis/efeitos dos fármacos , Reprodutibilidade dos Testes , Suíça/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
14.
Bioorg Med Chem Lett ; 29(11): 1278-1281, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981579

RESUMO

In this work, the synthesis and the pharmacological evaluation of diphenoxyadamantane alkylamines Ia-f and IIa-f is described. The new diphenoxy-substituted adamantanes share structural features present in trypanocidal and antitubercular agents. 1-Methylpiperazine derivative Ia is the most potent against T. brucei compound, whilst its hexylamine congener IIf exhibits a significant antimycobacterial activity.


Assuntos
Adamantano/farmacologia , Aminas/farmacologia , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Adamantano/análogos & derivados , Adamantano/química , Aminas/síntese química , Aminas/química , Antituberculosos/síntese química , Antituberculosos/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
15.
mBio ; 9(5)2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301850

RESUMO

New drugs are needed to control the current tuberculosis (TB) pandemic caused by infection with Mycobacterium tuberculosis We report here on our work with AX-35, an arylvinylpiperazine amide, and four related analogs, which are potent antitubercular agents in vitro All five compounds showed good activity against M. tuberculosisin vitro and in infected THP-1 macrophages, while displaying only mild cytotoxicity. Isolation and characterization of M. tuberculosis-resistant mutants to the arylvinylpiperazine amide derivative AX-35 revealed mutations in the qcrB gene encoding a subunit of cytochrome bc1 oxidase, one of two terminal oxidases of the electron transport chain. Cross-resistance studies, allelic exchange, transcriptomic analyses, and bioenergetic flux assays provided conclusive evidence that the cytochrome bc1-aa3 is the target of AX-35, although the compound appears to interact differently with the quinol binding pocket compared to previous QcrB inhibitors. The transcriptomic and bioenergetic profiles of M. tuberculosis treated with AX-35 were similar to those generated by other cytochrome bc1 oxidase inhibitors, including the compensatory role of the alternate terminal oxidase cytochrome bd in respiratory adaptation. In the absence of cytochrome bd oxidase, AX-35 was bactericidal against M. tuberculosis Finally, AX-35 and its analogs were active in an acute mouse model of TB infection, with two analogs displaying improved activity over the parent compound. Our findings will guide future lead optimization to produce a drug candidate for the treatment of TB and other mycobacterial diseases, including Buruli ulcer and leprosy.IMPORTANCE New drugs against Mycobacterium tuberculosis are urgently needed to deal with the current global TB pandemic. We report here on the discovery of a series of arylvinylpiperazine amides (AX-35 to AX-39) that represent a promising new family of compounds with potent in vitro and in vivo activities against M. tuberculosis AX compounds target the QcrB subunit of the cytochrome bc1 terminal oxidase with a different mode of interaction compared to those of known QcrB inhibitors. This study provides the first multifaceted validation of QcrB inhibition by recombineering-mediated allelic exchange, gene expression profiling, and bioenergetic flux studies. It also provides further evidence for the compensatory role of cytochrome bd oxidase upon QcrB inhibition. In the absence of cytochrome bd oxidase, AX compounds are bactericidal, an encouraging property for future antimycobacterial drug development.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Piperazinas/farmacologia , Tuberculose/tratamento farmacológico , Amidas/farmacologia , Amidas/uso terapêutico , Animais , Linhagem Celular , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Tuberculose/microbiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-30126954

RESUMO

The efficacy of the standardized four-drug regimen (comprising isoniazid, rifampin, pyrazinamide, and ethambutol) for the treatment of tuberculosis (TB) is menaced by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis Intensive efforts have been made to develop new antibiotics or to repurpose old drugs, and several of these are currently being evaluated in clinical trials for their antitubercular activity. Among the new candidate drugs is macozinone (MCZ), the piperazine-containing benzothiazinone PBTZ169, which is currently being evaluated in phase I/II clinical trials. Here, we determined the in vitro and in vivo activity of MCZ in combination with a range of anti-TB drugs in order to design a new regimen against active TB. Two-drug combinations with MCZ were tested against M. tuberculosis using checkerboard and CFU enumeration after drug exposure assays. MCZ was observed to have no interactions with all first- and second-line anti-TB drugs. At the MIC of each drug, MCZ with either bedaquiline (BDQ), clofazimine (CLO), delamanid (DMD), or sutezolid (STZ) reduced the bacterial burden by 2 logs compared to that achieved with the drugs alone, indicating synergism. MCZ also displayed synergism with clomiphene (CLM), a potential inhibitor of the undecaprenyl pyrophosphate synthase (UppS) in mycobacteria. For all the other drugs tested in combination with MCZ, no synergistic activity was observed. Neither antagonism nor increased cytotoxicity was found for most combinations, suggesting that MCZ could be added to different TB treatment regimens without any significant adverse effects.


Assuntos
Antituberculosos/farmacologia , Benzotiazóis/farmacologia , Piperazinas/farmacologia , Tiazinas/farmacologia , Tuberculose/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Clofazimina/farmacologia , Clomifeno/farmacologia , Diarilquinolinas/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Etambutol/farmacologia , Células Hep G2 , Humanos , Isoniazida/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Oxazolidinonas/farmacologia , Pirazinamida/farmacologia , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
17.
Artigo em Inglês | MEDLINE | ID: mdl-30012754

RESUMO

Macozinone (MCZ) is a tuberculosis (TB) drug candidate that specifically targets the essential flavoenzyme DprE1, thereby blocking synthesis of the cell wall precursor decaprenyl phosphoarabinose (DPA) and provoking lysis of Mycobacterium tuberculosis As part of the MCZ backup program, we exploited structure-guided drug design to produce a new series of sulfone-containing derivatives, 2-sulfonylpiperazin 8-nitro 6-trifluoromethyl 1,3-benzothiazin-4-one, or sPBTZ. These compounds are less active than MCZ but have a better solubility profile, and some derivatives display enhanced stability in microsomal assays. DprE1 was efficiently inhibited by sPBTZ, and covalent adducts with the active-site cysteine residue (C387) were formed. However, despite the H-bonding potential of the sulfone group, no additional bonds were seen in the crystal structure of the sPBTZ-DprE1 complex with compound 11326127 compared to MCZ. Compound 11626091, the most advanced sPBTZ, displayed good antitubercular activity in the murine model of chronic TB but was less effective than MCZ. Nonetheless, further testing of this MCZ backup compound is warranted as part of combination treatment with other TB drugs.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Piridazinas/farmacologia , Sulfonas/farmacologia , Proteínas de Bactérias , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Tuberculose/microbiologia
18.
J Bacteriol ; 199(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28559300

RESUMO

A handful of nucleoid-associated proteins (NAPs) regulate the vast majority of genes in a bacterial cell. H-NS, the histone-like nucleoid-structuring protein, is one of these NAPs and protects Escherichia coli from foreign gene expression. Though lacking any sequence similarity with E. coli H-NS, Rv3852 was annotated as the H-NS ortholog in Mycobacterium tuberculosis, as it resembles human histone H1. The role of Rv3852 was thoroughly investigated by immunoblotting, subcellular localization, construction of an unmarked rv3852 deletion in the M. tuberculosis genome, and subsequent analysis of the resulting Δrv3852 strain. We found that Rv3852 was predominantly present in the logarithmic growth phase with a decrease in protein abundance in stationary phase. Furthermore, it was strongly associated with the cell membrane and not detected in the cytosolic fraction, nor was it secreted. The Δrv3852 strain displayed no growth defect or morphological abnormalities. Quantitative measurement of nucleoid localization in the Δrv3852 mutant strain compared to that in the parental H37Rv strain showed no difference in nucleoid position or spread. Infection of macrophages as well as severe combined immunodeficient (SCID) mice demonstrated that loss of Rv3852 had no detected influence on the virulence of M. tuberculosis We thus conclude that M. tuberculosis Rv3852 is not involved in pathogenesis and is not a typical NAP. The existence of an as yet undiscovered Rv3852 ortholog cannot be excluded, although this role is likely played by the well-characterized Lsr2 protein.IMPORTANCEMycobacterium tuberculosis is the causative agent of the lung infection tuberculosis, claiming more than 1.5 million lives each year. To understand the mechanisms of latent infection, where M. tuberculosis can stay dormant inside the human host, we require deeper knowledge of the basic biology and of the regulatory networks. In our work, we show that Rv3852, previously annotated as H-NS, is not a typical nucleoid-associated protein (NAP) as expected from its initial annotation. Rv3852 from M. tuberculosis has neither influence on nucleoid shape or compaction nor a role in virulence. Our findings reduce the repertoire of identified nucleoid-associated proteins in M. tuberculosis to four transcription regulators and underline the importance of genetic studies to assign a function to bacterial genes.


Assuntos
Proteínas de Bactérias/análise , Proteínas de Ligação a DNA/análise , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Fatores de Virulência/biossíntese , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Membrana Celular/química , Citosol/química , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Humanos , Macrófagos/microbiologia , Camundongos SCID , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/microbiologia , Tuberculose/patologia , Virulência
19.
Drug Res (Stuttg) ; 67(8): 447-450, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28561241

RESUMO

The aim of the present investigation was to develop matrix tablet formulations for the in vitro controlled release of 2 new tuberculocidal adamantane aminoethers (compounds I and II), congeneric to the adamantane derivative SQ109, which is in final clinical trials, using carefully selected excipients, such as polyvinylpyrrolidone, sodium alginate and lactose. The tablets were prepared using the direct compression method and dissolution experiments were conducted using the US Pharmacopoeia type II apparatus (paddle method) in gastric and intestinal fluids. The results confirm that both analogues, albeit more lipophilic than SQ109, showed satisfactory in vitro release characteristics from solid pharmaceutical formulations. In conclusion, these formulations merit further assessment by conducting in the future bioavailability in vivo studies.


Assuntos
Adamantano/análogos & derivados , Antituberculosos/química , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Éteres/química , Adamantano/química , Adamantano/farmacologia , Antituberculosos/farmacologia , Células Cultivadas , Composição de Medicamentos/métodos , Éteres/farmacologia , Excipientes , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Solubilidade , Comprimidos
20.
J Infect Chemother ; 23(11): 794-797, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28527650

RESUMO

Tuberculosis (TB) treatment is confounded by the range of metabolic states displayed by Mycobacterium tuberculosis, by the long duration required and by the increasing prevalence of drug-resistant strains. Latent TB infection is especially difficult to treat due to the phenotypic antibiotic resistance of non-replicating M. tuberculosis. Therefore, the development of new drugs effective against both active and latent TB infection is needed. New 1-hydroxy-2-thiopyridine derivatives were synthesized and found to be highly effective in vitro against both actively growing and dormant non-culturable M. tuberculosis. Such compounds are leads for the development of new drugs for all forms of TB including latent infection.


Assuntos
Antituberculosos/farmacologia , Tuberculose Latente/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Piridinas/farmacologia , Células A549 , Antituberculosos/síntese química , Antituberculosos/uso terapêutico , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/fisiologia , Piridinas/síntese química , Piridinas/uso terapêutico , Espectrometria de Fluorescência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...